Predicting Unobserved Driver of Regime Shifts in Social-Ecological Systems with Universal Dynamic Equations
Published in EcoEvo Arxiv, 2025
Ecosystems around the world are anticipated to undergo regime shifts as temperatures rise and other climatic and anthropogenic perturbations erode resilience. Forecasting these nonlinear ecosystem dynamics can help stakeholders prepare for rapid changes. One major challenge is that regime shifts can be difficult to predict when driven by unobserved factors—such as illegal fishing from a fishery or unreported poaching in a game reserve. This paper advances scientific machine learning methods, specifically universal dynamic equations (UDEs), to identify changes in an unobserved bifurcation parameter and predict ecosystem regime shifts.
Recommended citation: Rathore, K. J., Buckner, J. H., Meunier, Z. D., Esquivel, J. A., & Watson, J. R. (2025). Predicting unobserved driver of regime shifts in social-ecological systems with universal dynamic equations. https://ecoevorxiv.org/repository/view/11165/
